
D. J. FLUKE AND R. B. SETLOW

lines are weak compared to the strong lines of the
Uviarc spectrum. The scattered radiation when the
monochromator is set at one of the stronger mercury
lines is less than 1 percent. After the mirrors were
realuminized the scattered radiation in the 2301A line
was 5 percent and about 0.3 percent for the stronger
mercury lines.

After the second monochromator was in operation, a
third mirror of 12-foot radius of curvature was added
so that there might be an alternative arrangement in
which collimator and telescope lengths were doubled,
reducing distortion and improving resolution as well
as permitting the use of longer sources. These ad-
vantages are gained by the change in mirrors, but not
to a sufficient degree that this alternative arrangement
has proved useful. The original choice of dimensions
has proved to be in many ways a fortuitous combina-
tion, the distortion being just at the threshold of
decreasing resolution.

ANOTHER FREE-PRISM MONOCHROMATOR

For a free-surface prism the problems of distortion
and odd beam angle can be largely met by resorting to
three reflections. A single concave mirror serves as
collimator and telescope in two separate reflections,
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and a front-surface piece of plate glass immersed slant-
wise in a tank of water acts as the third reflecting
surface. This arrangement has been set up to test and
is in many respects superior to the Harrison-type
prism, although because of the three reflections it is
not likely to be useful below 2400A. However, at
higher wavelengths where aluminum is an efficient re-
flector the arrangement has the advantages of hori-
zontal beam (and slits), a simple wavelength adjust-
ment by tilting the underwater mirror, fixed beam
direction and position, and increase of dispersion
toward longer wavelength settings. Various combina-
tions of aperture and resolution may be set up by ad-
justment of the two mirrors, and it has been possible
to resolve bands of better than 10A half-width at 2800A.
The only special parts required are a front-surfaced
concave mirror such as amateur astronomers use and a
front-surfaced piece of plate glass. The mirror used
for trial of this arrangement is 10 inches in diameter
and spherically figured to a 12-foot radius and cost
about $100. The arrangement appears to be a simple
and effective one for monochromatic work in the
region of maximum nucleic acid absorption, around
2600A.
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The derived laws apply to layers whose scattering coefficient S and absorption coefficient K vary vertically
to the surface of the layer. In the general case the differential equations of the preceding paper [P. Kubelka,
J. Opt. Soc. Am. 38, 448 (1948)] must be used; the coefficients, however, hitherto constant, now are functions
of the distance x from the surface. In the practically important case in which K/S is constant, one may
introduce the variable p, such that pfJozS(x)dx. One reduces thereby the nonhomogeneous to the pre-
viously treated homogeneous case.

Transmittance T, 2 and reflectance R, 2 of two nonhomogeneous sheets can be calculated by the following
equations:

TI, TIT2 R, 2=Ri+T1R
:`_1-RiR 2, ' 1-R 1R,

where T 1, T2, R,, R2 are the transmittances and reflectances of the single sheets, and R, represents the
reflectance of the first sheet when illuminated in the inverse direction. Analogous formulas for more sheets
and formulas relating transmittance, reflectance for specimens upon black, gray or white backing surfaces,
and contrast ratio, are derived.

It is shown by theory and experiment that reflectance and absorption of a nonhomogeneous specimen
depend on the direction of illumination, whereas transmittance does not.

INTRODUCTIONIN two previous papers'"2 the optical behavior of
light-scattering materials has been treated theoret-

* An abstract of this work has been presented to the Brazilian
Academy of Science in a lecture given by the author in the
session of December 28, 1949.

I Paul Kubelka and Franz Munk, Z. tech. Phys. 12, 593 (1931).
See also abstracts in English given by F. A. Steele, reference 5;

ically. The materials were assumed to be "homogeneous
in this way that the optical inhomogeneities (necessarily
existing when the light shall be scattered) are incom-

Deane B. Judd, reference 6; H. A. Gardner, Physical and Chemical
Examination of Paints, Varnishes, Laquers and Colors (Inst. Paints
Varnishes Research, Washington, D. C., 1939), ninth edition,
p. 10ff.

2 Paul Kubelka, J. Opt. Soc. Am. 38, 448 (1948).
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parably smaller than the thickness of the specimen
and uniformly distributed in the material." We now
weaken this restriction, in so far as we shall deal with
specimens varying as to the optical properties of their
material from one surface to the other (the surfaces
being-as assumed in the previous investigations-
plane, parallel and infinitely extended). On the other
hand, the optical properties may not vary along planes
parallel to the surfaces. The incident light is supposed,
once more, to be diffused and to remain unchanged in
its angular and wavelength distribution by reflection
or transmission. The medium in which the scattering
material is embedded is again assumed to be the same
as the medium of incidence (generally air).

This last assumption will be nearly realized, when we
deal e.g. with dull paper or with dull waterpaints. If we
assume the medium to be air, we may ignore reflection
at the surface of the specimen. In a recent work,
Stenius3 determined the influence of surface reflection
of paper with regard to the author's theory' 2 on homo-
geneous layers (which started from the same assump-
tion). He came to the conclusion that surface reflections
of dull paper are negligible. This fact also follows from
earlier investigations of Steele4 and Judd and his col-
laborators.5

I. THE GENERAL CASE

The following system of differential equations has
been derived in the previous papers",2 for a homogeneous
light-scattering material:

-di= - (S+K)idx+Sjdx, (1)
dj= - (S+K)jdx+Sidx

(i-flux of the diffused light traveling inside the
specimen toward its unilluminated surface, at the
distance x from this surface; jflux of the light
traveling in the inverse direction; Scoefficient of
scatter; K-coefficient of absorption.) These equations
hold also for nonhomogeneous specimens. S and K,
however, hitherto constant, become functions of x.

In the general case we introduce the functions
S= S(x) and K= K(x). By integrating Eqs. (1) between
x =0 and x = X (X thickness of the specimen), we may
deduce equations for the transmittance T and the
reflectance R of the specimen. It will, however, not
often happen that the functions S=S(x) and K= K(x)
are known. Therefore we shall limit our considerations
to several special cases.

II. THE CASE K/S=CONSTANT

When a homogeneous scattering phase (e.g. cellulose)
is nonuniformly dispersed in a colorless medium (e.g.

3 Ake S :son Stenius, Svensk Papperstidn. 56, 607 (1953).
4 F. A. Steele, Paper Trade J. 100, 37 (1935).
5 Deane B. Judd, (with collaboration of Harrison, Sweo,

Hickson, Eickjoff, Show, and Pfaffenbarger) J. Research Natl. Bur.
Standards 39, 287 (1937). Deane B. Judd, Paper Trade J. (1938),
January 6.

air, in the case of paper), S and K are very often propor-
tional to each other, so that K/S and (S+K)/S are
constant, whereas S is variable. We may then introduce
into Eqs. (1) the new variable p such that

p= fJ S(x)dx,

S(x)dx= dp.
whence

(2)

(3)

We call p the scattering power of the layer x= 0 to
x = x. The scattering power P of the whole specimen of
thickness X is given by

P= S(x)dx. (4)

The concept of "scattering power" has been introduced
in the literature by Judd.5 It is extended here so as to
apply to nonhomogeneous layers. Hence it becomes
particularly useful. The differential equations now read

-di= - (S+K/S)idp+jdp, (5)
dj= - (S+K/S)jdp+idp.

These equations are not only now more easily integrated
but also lead to the same formulas as did the original
equations 1 in which S and K were constant. We may
adopt all the formulas complied in the previous paper,2

including the various approximations. We only have to
exchange the special value of scattering power SX,
which is valid for homogeneous specimens, by the
general value, symbolized by the letter P. For instance

1
Reflectance: R=

Transmittance: T=

a+bctghbP

b

a sinhbP+ b coshbP

(6)

(7)

a=- (S+K)/S, b (a2-1)1.

We may now introduce the content D(x) of the
disperse phase per unit volume. S and K will be
proportional to D if the disperse phase itself is homo-
geneous, as assumed. Consequently

a--(S+K/S) =constant, S(x) =SwD(x),

Si,, being a constant which characterizes not the turbid
material but the dispersed phase as to its ability to
scatter light. When the medium is air, D is practically
identical with the density of the concerned layer. So
we find [Eq. (4)]:

x x
P=, S(x)dx=Sj0 D (x) dx= SwX.,

X . being the weight of one unit square of the specimen.
Now there exists full analogy to the case of a homo-
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again T1R2
2R1R1= T1R2

2R 2 to the second sheet ... and
so on, ad infinitum. Adding up the portions finally
transmitted by the combined specimen, we get

TjT 2
T1,2=TT 2 (1+RiR 2 +Ri2 R2

2 + * ) 
1-Rd?2

(8)

Suming up the portions reflected by the combined
specimen we get

R1,2=R1+T1TrR2(1+RrR2+Rr2R2
2+ . . )

TjTiR 2
=R1+

1-RrR2
(9)

geneous specimen, for which P = SX. We measure only
the thickness of the specimen by weight (as paper
technologists usually do) and adapt the definition of S.
Besides, this way of defining X and S has been antici-
pated by Steele4 and by Judd5 as far as they were
applying the author's theory to paper.t

III. TWO NONHOMOGENEOUS SPECIMENS

Let us consider now two nonhomogeneous specimens
of different optical properties and, perhaps, of different
thickness. The character of the nonhomogeneity is of
no importance. Within each specimen the functions
S=S(x) and K=K(x) may be of any kind whatever,
continuous or discontinuous. We remember that we are
treating only the case in which surface reflections can
be neglected. For example, we may consider the two
specimens as nonhomogeneous sheets when each
specimen is composed of several homogeneous sheets.

Now we measure the transmittances T and T2

and the reflectences R1 and R 2 of both specimens in
one direction (say, when the light passes from above
to below) and we measure the transmittances TI, TI
and the reflectances RI, RI, in the opposite direction.
Then we place the two specimens together and il-
luminate specimen 1. What will be the values of
transmittance T 2 and reflectance R 1, 2 of the combined.
specimen?

In Fig. 1 the path of the diffused light is symbolized
by oblique beams. The light flux which hits sheet 1 is
I= 1. Firstly the portion R is reflected by the first
sheet and the portion T passes through and hits the
second sheet which reflects the portion TR 2 and
transmits the portion T1T2 . The portion T1R2 hits the
lower side of the first sheet which transmits TR 2T 1
and reflects the portion TjR 2Ri; from this portion the
amount T1R2RIT2 passes through the second sheet and
T 1R2RiR 2= TlR2

2R1 hits again the lower side of the
first sheet which transmits TR 2

2RrTT and reflects

t From measurements made by Stenius (see reference 6) can
be deduced, however, that in certain types of handmade paper S,,
is not exactly constant.

IAke S:son Stenius, Svensk Papperstidn. 54, 663 (1951);
(reference 6) 54, 701 (1951).

Since, as will be shown in the next section, T 1 = TI, we
can write

(10)
T12-R2Rl,2= R+

1-RIR2

For any homogeneous sheet R1 =R 1 . Hence for two
homogeneous sheets formulas 8 and 10 reduce to

TjT 2
T1R1 2
1-R1R2

and

(11)

(12)R112=Rl+ -
1-R1R2

Equations (11) and (12) can be found already in the
papers of Gurevic 7 and of Zocher. 8 They are less general
then Eqs. (8) and (10) because they do not hold for
nonhomogeneous sheets, as do Eqs. (8) and (10).

IV. THE NONPOLARITY OF TRANSMITTANCE

We now prove the statement made in Sec. III, that

TI= T1,

that is to say, the transmittance has the same value, if
we illuminate a nonhomogeneous sheet from one or
the other side.

Transmittance of a pair of nonhomogeneous sheets
is given by Eq. (8):

T1, 2= T1 T2 / (1-RIR 2 ).

When the light passes through the pair in the inverse
direction, the same equation holds. We have only to
alter the indices

TII,I= TIITI/(1-R2R I).

Dividing this equation by Eq. (8), we get

TII, TTri
T1 1, 1 T1 T1 1

______ ~T1, 2 TjT2

7 Gurevic, Physik. Z. 31, 753 (1930).
8 Hans Zocher, Kolloidchlemisclhes Taschenbuchz, (1948) third

edition, p. 83.

FIG. 1.
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Now we add a third sheet. While dealing with non-
homogeneous sheets, we may consider the first two
sheets as one, and the third as the other one of a set
of two and apply the above formula

Triiju, TrijTIIr TTiITIri

T1 , 2, 3 T1 , 2 T 3 T1 T 2 T 3

We may add a 4th, 5th, -nth sheet, too, and find in
the same way

TN ...III, II, I T Tri Trii ... N

T1, 2,3, T1 T2T3 . . T,

Let us now increase the number n of sheets and, in
order to keep the thickness of the whole set, decrease
their thickness accordingly until we arrive at n= oo
and infinitesimally thin sheets. We may consider such
sheets as homogeneous. Therefore

TI=aT; TII=cT2; TIII=eT3;queTN= Tnt;l

and consequently

and get after some transformation

T1, 2,3=T 2T3 . (15)
1 -R 1 R 2 -R 2R 3+R1 R2

2 R 3-RT 2
2 R 3

This equation is symmetrical with regard to the 1 and
3 quantities only; we may, without altering the value
of T1, 2 3, exchange T1 for T3 and RI for R 3 but not,
similarly, T2 and R 2 for T1 and R1 or T, and R1 for
T 3 and R3. Consequently,

but

and

T1,2,3= T3, 2, 1)

T1,2, 3 T 2, 3, 1

T1,235- T1, 3, 2.

V. THREE OR MORE NONHOMOGENEOUS
SPECIMENS

After the manner of deriving Eq. (14), we may
easily get an equation for the transmittance of three
nonhomogeneous sheets

TT2,3= TT 2, 3 /(1-RIR2, 3). (16)

(13)

This means, transmittance of any nonhomogeneous
specimen does not depend on the direction of illumina-
tion, in accordance with our statement.

Now we shall show that we may invert the order of
the sheets (which is equivalent to inverting the direction
of illumination), but we may not change the order in
any other way without altering transmittance. The
sheets themselves may be homogeneous or not. We
takp as an example a set of three different homogeneous
sheets. Again, we imagine the set to be composed of a
pair of sheets and a single one. We consider the pair
to be a nonhomogeneous single sheet and write accord-
ing to Eq. (8)

T1, 2, 3= T1, 2T3(14)

1-R 2 , 1R3

substitute for T1 , 2 the value of Eq. (11)

T 1T2
T1, 2=

1-R1 R2

substitute R2,1 from Eq. (12)

T22R,
R2,1= R2+

1-R 2R1

t We may prove this also in the following way: in the previous
paper (reference 2), page 450, we find for homogeneous layers:
K=-(dT/dX)xo-S or dTx-o=-(K+S)dX. This equation
holds also for nonhomogeneous layers, for dK and dS would
appear as products with dX only, it is to say small of the second
order. Consequently, Tx-o= - (K+S)X, which equation is
independent of the direction of illumination.

in which T2,3 and R2, 3 have to be substituted by the
values calculated by Eqs. (8) and (10). We also can
write immediately a formula for n nonhomogeneous
sheets:

(17)

In the same way we may write a formula for reflectance:

(18)

Both equations, of course, may be used for sets of
homogeneous sheets too. (Then we do not need to
distinguish between R1 and R1)

VI. NONHOMOGENEOUS SPECIMENS WITH BACKING

Paper and paint technologists frequently determine
the reflectance of a specimen upon a backing from
which the transmitted light is reflected back to the
specimen by a surface of reflectance rO.

In Eq. (10) we may consider the second sheet as
backing (R2=r). So we get immediately an equation
representing reflectance Rl(r) of a nonhomogeneous
specimen with backing:

T2r
Rj(r)=~ = RR1

1-Rr
(19)

(In spite of the fact that there is now a single sheet
only, we keep the indices 1 and I in order to mark the
direction of the illumination.) Solving for T from
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Eq. (19) leads to the formula

T= [(Rl(,)-R) (1/r-R)]A, (20)

which permits one to calculate the transmittance of a
nonhomogeneous specimen from no other measurements
than of reflectances. Formulas 19 and 20 correspond
with formulas (37) and (37a) derived in the previous
paper 2 for a homogeneous specimen. They become
identical, if we assume Rr=Rl, as we have to, in the
case of homogeneity.

We remember that T is not altered by turning the
specimen over upon the backing, and therefore we may
write also

T= [(RI(r)-RI) (1/r-Rj)]r. (21)
From Eqs. (20) and (21) we may eliminate T and get a
relation between the different kinds of reflectance of a
nonhomogeneous specimen:

Rl(r)-R= RI(r)-Rr (22)

1-rRj 1-rRr

Now it would be very interesting to get formulas
corresponding to those derived by Judd,', 9 connecting
reflectances of the same specimen in the cases of
perfectly white (r= 1; R(r)=R(l)), gray or not perfectly
white (r=r; R(r)=R(r)) and perfectly black backing
(r=0; R(,)=R(o)9R). We substitute r=1 and R1(r)
=R(,) in Eq. (20):

T= [(R1(o)-R,) (1-R1)]', (23)

and combine this equation with the original Eq. (20).
We get the formula

r(l-Rr)

which corresponds to formula (36a) of the previous
paper.2 By introducing contrast ratios

Cl(r) = Rl/Rl(r)
and

C,(,) =R,/R,(,),
we get

This formula corresponds to formula 2b of Judd' and
simplifies to it, if we put R 1=R,-R. If the specimen is
of the type treated in Sec. II (K/S= const.), then
Rr=R, and Judd's formula holds. Judd, when stating
that his formula applies to nonhomogeneous specimens,
certainly had in mind this special case of nonhomo-
geneity.

9 Deane B. Judd, J. Research Natl. Bur. Standards 12, 345
(1934) (reference 9); 13, 281 (1934).

VII. PSEUDOHOMOGENEOUS LAYERS

In the case as (S+K)/S= const, S=S(x), which was
treated in Sec. II, not only transmittance, but also
reflectance is independent of the direction of illumina-
tion, so that R,=R. We may prove it e.g. by Eq. (32)
of the previous paper,2 which we may write as

R=a- (T2+a2- 1).

a is constant, therefore T being always independent of
the direction of illumination, R has to be independent
too.

From this follows that in Secs. 3-6 we can set
RI = R1 in all equations and so use the simpler formulae,
valid for homogeneous layers.

There is another case, where we can do so: when
a- (S+K)/S is not constant, but symmetrically
distributed in the layer, that is to say when

a(x)=a(X-x).
Then there is no difference between the two directions
and consequently also R1 =R,. Stenius' when applying
the author's theory on homogeneous layers",2 used this
relation. He was working with somewhat nonhomo-
geneous paper sheets. In order to make them behave
like homogeneous ones, he folded them so that the
folded sheets became symmetrical.

EXPERIMENTAL PART

An interesting result of our theory is the fact that
transmittance of a nonhomogeneous specimen does not
depend on the direction of illumination (whereas
reflectance and absorption may be altered considerably,
if we invert the direction of illumination). This result
has been verified experimentally.

The experiments were made (1) with fairly white,
(2) with pale blue, and (3) with intense blue paper.
The white paper was commercial filter paper, the two
blue ones have been prepared by dyeing the same paper
with methylene blue.

The measurements were made with the aid of a
simple selenium cell photometer and with diffused
illumination. The photometer was connected with a
Multiflex galvanometer. One division of the graduation
of the galvanometer corresponded to approximately
0.03 percent of the full illumination. Absolute exactitude
was not considered to be important, because relative
exactitude was sufficient for our purpose.

Four series of experiments have been made with
different numbers and combinations of the three kinds
of paper. In every series the combination concerned has
been permutated thoroughly as to the order of the
different sheets. Every series has been measured three
to six times in order to get fair average values.

The results are compiled in Table I. The table shows,
in full accordance with the theory, that when the order
of the sheets is only inverted, but otherwise kept, the
deviations of the measured transmittances do not

[o1{18 =
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surpass the limits of experimental errors. On the other
hand, any other permutation of the order of sheets
alters transmittance perceptibly, sometimes very con-
siderably (see, e.g., series 2). The lowest values of trans-

mittance have been obtained when the darkest sheet
was placed into the middle of the set. Also this result
accords with the theory. In order to demonstrate it, we
transform Eq. (15) and get

T1 T2 T3
T1, 2, 3-

1- (RR 2+R2R3+R1R3)
+RiR2 R3 (1+R 2

2 - T2
2 )/R2

(26)

This equation is symmetrical with respect to the three
sheets, with exception of the last factor of the last term
in the denominator,

(1+R 2
2- T2

2)/R2 .

Therefore, when the arrangement of the sheets is
changed, this factor alone is responsible for the differ-
ence in transmittance. This factor, however, depends
on the darkness of the sheet placed in the middle.
According to the previous paper,2 Eq. (33), the factor

(1+R 2
2 -T2)/R 2 = 2a2 = 1/R.,2+Ro 2 ,

R,,2 being the reflectivity of the sheet 2 (-=reflectance
of an infinitely thick pile of sheets having the optical
qualities of sheet 2). The smaller R.,2 the higher is
2a2 and therefore the denominator in Eq. (26), that is
to say, the darker the middle sheet, the smaller is the
transmittance T1, 2,3 of the whole system.

SUMMARY

(1) Transmittance and reflectance of nonhomo-
geneous turbid systems can be calculated in ways

TABLE I.

Arrangement
Series of sheets

1 3-1-1-1-1
1-1-1-1-3
1-1-1-3-1
1-3-1-1-1
1-1-3-1-1

2 3-1-1
1-1-3
1-3-1

3 1-2-3
3-2-1
2-3-1
1-3-2
2-1-3
3-1-2

4 2-2-3
3-2-2
2-3-2

Results
(galvanometer reading)

23.9; 24.2; 23.3
26.7; 23.0; 23.0
16.6; 17.5; 16.9
16.9; 17.0; 16.9
16.2; 15.7; 15.2
75.5; 73.0; 71.3; 72.9
74.3; 73.0; 71.5; 71.1
55.0; 54.9; 54.2; 54.0
43.1; 43.3; 42.2
43.5; 43.6; 42.8
40.3; 38.3; 37.9
39.3; 38.3; 37.3
45.2; 45.6; 45.5
45.3; 45.2; 45.4
34.3; 35.5; 34.5; 33.7; 33.7; 33.0
34.7; 34.4; 34.5; 34.1; 33.8; 33.5
32.2; 31.1; 32.2; 30.6; 30.2; 30.5

Average

23.8
24.2
17.0
16.9
15.7
73.2
72.5

- 54.5
42.9
43.3
38.8
38.3
45.4
45.3
34.1
34.2
31.1

analogous to those used in the preceding paper2 for
homogeneous systems. There are special cases of
practical importance that can be treated quite easily.

(2) In nonhomogeneous systems reflectance depends
in general on the direction of illumination, whereas
transmittance is always independent of it.§
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