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Figure 1: Abstraction examples. Original: Snapshots of a guard in Petra (left) and two business students (right). Abstracted: After several
bilateral filtering passes and with DoG-edges overlayed. Quantized: Luminance channel soft-quantized to 12 bins (left) and 8 bins (right).
Note how folds in the clothing and other image details are emphasized (stones on left and student’s shadows on right).

Abstract

We present an automatic, real-time video and image abstraction
framework that abstracts imagery by modifying the contrast of vi-
sually important features, namely luminance and color opponency.
We reduce contrast in low-contrast regions using an approximation
to anisotropic diffusion, and artificially increase contrast in higher
contrast regions with difference-of-Gaussian edges. The abstrac-
tion step is extensible and allows for artistic or data-driven con-
trol. Abstracted images can optionally be stylized using soft color
quantization to create cartoon-like effects with good temporal co-
herence. Our framework design is highly parallel, allowing for a
GPU-based, real-time implementation. We evaluate the effective-
ness of our abstraction framework with a user-study and find that
participants are faster at naming abstracted faces of known persons
compared to photographs. Participants are also better at remember-
ing abstracted images of arbitrary scenes in a memory task.

CR Categories: 1.3.3 [Computer Graphics]: Image Generation
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1 Introduction

Many image stylization systems are designed for purely artistic pur-
poses, like creating novel forms of digital art or helping laymen and
artists with laborious or technically challenging tasks. Recently,
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several authors have proposed the goal of automatic stylization for
efficient visual communication, to make images easier or faster to
understand [DeCarlo and Santella 2002; Gooch et al. 2004; Raskar
et al. 2004]. Although we also cater to artistic stylization (Figure 1,
Quantized), our work focuses primarily on visual communication.

We present an automatic, real-time framework that abstracts im-
agery by modeling visual salience in terms of luminance and color
opponency contrasts. We simplify regions of low contrast while en-
hancing high contrast regions. For adjusting contrasts, we employ
several established image processing algorithms, which we modify
for greater parallelism, temporal coherence, and directability.

We show that a separated approximation to a bilateral filter, ap-
plied iteratively, is an effective, parallelizable approximation to the
process of simplifying images using anisotropic diffusion. We en-
sure that small input changes lead to similarly small output changes,
on a frame-per-frame basis using several smooth quantization func-
tions and avoid having to track object contours across frames.

A user study demonstrates the effectiveness of our framework
for simple recognition and memory tasks, showing that our frame-
work performs well even on small images, particularly on difficult
subject matter like faces. We thus believe that visual communica-
tion applications will greatly benefit from our framework, as per-
ceived fidelity is often paramount to actual fidelity for communica-
tion purposes. Possible applications include low-bandwidth video-
conferencing and portable devices.

2 Related Work

Previous work in image-based stylization and abstraction systems
varies in the use of scene geometry, video-based vs. static input,
and the focus on perceptual task performance and evaluation.
Among the earliest work on image-based NPR was that of Saito
and Takahashi [1990] who performed image processing operations
on data buffers derived from geometric properties of 3D scenes.
Our own work differs in that we operate on raw images, without
requiring underlying geometry. To derive limited geometric infor-
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Figure 2: Framework overview. Each step lists the function performed, along with user parameters. The right-most paired images show
alternative results, depending on whether luminance quantization is enabled (right) or not (left). The top image pair shows the final output.

mation from images, Raskar et al. [2004] computed ordinal depth
from pictures taken with purpose-built multi-flash hardware. This
allowed them to separate texture edges from depth edges and per-
form effective texture removal and other stylization effects. Our
own framework does not model global effects such as repeated tex-
ture, but also requires no specialized hardware and does not face
the technical difficulties of multi-flash for video.

Several video stylization systems have been proposed, mainly
to help artists with labor-intensive procedures [Wang et al. 2004;
Collomosse et al. 2005]. Such systems extended the mean-shift-
based stylization approach of DeCarlo and Santella [2002] to com-
putationally expensive three-dimensional video volumes. Difficul-
ties with contour tracking required substantial user correction of the
segmentation results, particularly in the presence of occlusions and
camera movement. Our framework does not derive an explicit rep-
resentation of image structure, thus limiting the types of stylization
we can achieve. In turn, we gain a framework that is much faster to
compute, fully automatic, and temporally coherent.

Fischer et al. [2005] explored the use of automatic stylization
techniques in augmented reality applications. To make virtual ob-
jects less distinct from the live video stream, they applied styliza-
tion effects to both virtual and real inputs. Although parts of their
system are similar to our own, their implementation is limited in
the amount of detail it can resolve, and their stylized edges tend to
suffer from temporal noise.

Recently, several authors of NPR systems have defined task-
dependent objectives for their stylized imagery and tested these
with perceptual user studies. DeCarlo and Santella [2002] use eye-
tracking data to guide image simplification in a multi-scale system.
In follow-up work, Santella and DeCarlo [2004] found that their
eye-tracking-driven simplifications guided viewers to regions de-
termined to be important. They also considered the use of compu-
tational salience as an alternative to measured salience. Our own
work does not rely on eye-tracking data, although such data can
be used. Our implicit visual salience model is less elaborate than
the explicit model of Santella and DeCarlo’s later work, but can be
computed in real-time. Their explicit image structure representation
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allowed for more aggressive stylization, but included no provisions
for the temporal coherence featured in our framework.

Gooch et al. [2004] automatically created monochromatic hu-
man facial illustrations from Difference-of-Gaussian (DoG) edges
and a simple model of brightness perception. We use a similar edge
model and evaluation study to Gooch et al. but additionally address
color, real-time performance and temporal coherence.

3 Method

Our goal is to abstract images by simplifying their visual content
while preserving or even emphasizing most of the perceptually im-
portant information.

Our framework is based on the assumptions that (1) the human
visual system operates on different features of a scene, (2) changes
in these features are of perceptual importance and therefore visually
interesting (salient), and (3) polarizing these changes is a basic but
useful method for automatic image abstraction.

Several image features are believed to play a vital role in low
level human vision, among these are luminance, color opponency,
and orientation [Palmer 1999]. A sudden spatial change (high con-
trast) in any of these features can represent boundaries of objects,
subobject boundaries, or other perceptually important information.
High contrast in these features is therefore linked to high visual
salience, and low contrast to low salience. Based on this princi-
ple, several computational models of visual salience have been pro-
posed [Privitera and Stark 2000; Itti and Koch 2001].

For our automatic, real-time implementation we implicitly com-
pute visual salience with the following restrictions: we consider just
two feature contrasts, luminance, and color opponency; we do not
model effects requiring global integration; and we process images
only within a small range of spatial scales. To allow for artistic
control or more elaborate visual salience models, our framework
alternatively accepts arbitrary scalar fields to direct abstraction.

The basic workflow of our framework is shown in Figure 2. We
first exaggerate the given contrast in an image using nonlinear dif-



fusion. We then add highlighting edges to increase local contrast,
and we optionally stylize and sharpen the resulting images.

3.1 Extended Nonlinear Diffusion

Perona and Malik [1991] defined a class of filters, called
anisotropic diffusion filters, which have the desirable property of
blurring small discontinuities and sharpening edges, as guided by
a diffusion conduction function that varies over the image. Using
such a filter with a conduction function based on feature contrast,
we can amplify or subdue the given contrast in parts of an image.
Barash and Comaniciu [2004] demonstrated that anisotropic dif-
fusion solvers can be extended to larger neighborhoods, thus pro-
ducing a broader class of extended nonlinear diffusion filters. This
class includes iterated bilateral filters as one special case, which we
prefer due to their larger support size and the fact that they can be
approximated quickly and with few visual artifacts using a sepa-
rated kernel [Pham and Vliet 2005].

Given an input image f(-), which maps pixel locations into some
feature space, we define the following filter, H(-):

/e_%(%) w(x,£) f(x)dx
H(XA,O'd,Gr) = 2 (@)

/eié(ui‘;“) w(x,£)dx

In this formulation, £ is a pixel location, x are neighboring pix-
els, and oy is related to the blur radius. Increasing o, results in
more blurring, but if oy is too large features may blur across signif-
icant boundaries. The range weighting function, w(-), determines
where in the image contrasts are smoothed or sharpened by iterative
applications of H(-).

w(x, %, or) (1—m(®)) -w (x,% 0,) +m(®)-u(® (2

S ,1@&t&my
w (x7~x7 Gr) - e 2 or (3)

For the real-time, automatic case, we set m(-) = 0, such that
w(-) =w/(-) and Equation 1 becomes the familiar bilateral filter,
where o, determines how contrasts will be preserved or blurred.
Small values of o, preserve almost all contrasts, and thus lead
to filters with little effect on the image, whereas for large values,

O, —00

w(-) = 1, thus turning H(-) into a standard, linear Gaussian
blur. For intermediate values of o, iterative filtering of H(-) re-
sults in an extended nonlinear diffusion effect, where the degree of
smoothing or sharpening is determined by local contrasts in f(-)’s
feature space. We use o, = 3 throughout this paper and choose
o, = 4.25 for most images and the video.

With m(-) # 0, the range weighting function, w(-), turns into
a weighted sum of w/(-) and an arbitrary importance field, u(-),
defined over the image. In this case, m(-) and u(-) can be computed
via a more elaborate visual salience model [Itti and Koch 2001],
derived from eye-tracking data (Figure 3, [DeCarlo and Santella
2002]), or painted by an artist [Hertzmann 2001].

Tomasi and Manduchi [1998] suggested computing the bi-
lateral filter on a perceptually uniform feature space, such as
CIELab [Wyszecki and Styles 1982], so that image contrast is ad-
justed depending on just noticeable differences. We follow this ad-
vice and our parameter values assume that L € [0,100] and (a,b) €
[—127,127]. Theoretically, the feature space could be extended to
include additional features, such as orientation-dependent Gabor
filters, although care would have to be taken to maintain percep-
tual uniformity of the combined feature space.
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Figure 3: Automatic vs. external abstraction. Top Row: Original
image by DeCarlo and Santella [2002] and their abstraction using
eye-tracking data. Bottom Row: Our automatic abstraction, and
data-driven abstraction based on the eye-tracking data.

3.2 Edge detection

In general, edges are defined by high local contrast, so adding visu-
ally distinct edges to regions of high contrast further increases the
visual distinctiveness of these locations.

Marr and Hildreth [1980] formulated an edge detection mecha-
nism based on zero-crossings of the second derivative of the lumi-
nance function. They postulated that retinal cells (center), which
are stimulated while their surrounding cells are not stimulated,
could act as neural implementations of this edge detector. A com-
putationally simple approximation is the difference-of-Gaussians
(DoG) operator. Rather than using a binary model of cell-activation,
we define our DoG edges using a slightly smoothed step function,
D(-) (bottom inset, Figure 2) to increase temporal coherence in an-
imations. The parameter 7 in Equation 4 controls the amount of
center-surround difference required for cell activation, and ¢, con-
trols the sharpness of the activation falloff. In the following, we
define S5, = S(%,0,) and S5, = S(%,v/1.6- 0,), with blur function
S(-) given in Equation 5. The factor of 1.6 relates the typical recep-
tive field of a cell to its surroundings [Marr and Hildreth 1980].

. 1 if (Sg, —7-S5,) >0,
D(%,0e,7, 9e) {1 +tanh(@, - (S5, — 7+ S5,)) otherwise.

1
S0 = 5o / F)e(E—x, 00) dx )

Here, o, determines the spatial scale for edge detection. The
larger the value, the coarser the edges that are detected. The thresh-
old level 7 determines the sensitivity of the edge detector. For small
values of 7, less noise is detected, but real edges become less promi-
nent. As T — 1, the filter becomes increasingly unstable. We use
T = 0.98 throughout. The falloff parameter, ¢,, determines the
sharpness of edge representations, typically ¢, € [0.75,5.0]. For
ny, bilateral iterations, we extract edges after n, < n, iterations to
reduce noise. Typically, n, € {1,2} and nj, € {3,4}.

Canny [1986] devised a more sophisticated edge detection al-
gorithm, which found use in several related works [DeCarlo and
Santella 2002; Fischer et al. 2005]. Canny edges are guaranteed to
lie on any real edge in an image, but can become disconnected for
large values of o, and are computationally more expensive. DoG



Figure 4: Parameter variations. Coarse: Abstraction using coarse
edges (0, = 5) and soft quantization steps (¢ = 10,Ap =0.9,Qp =
1.6, ¢, = 3.1). Detailed: Finer edges (0, = 2) and sharper quanti-
zation steps (¢ = 14,Ap = 3.4,Q4 = 10.6, ¢, = 9.7).

edges are cheaper to compute and not prone to disconnectedness
but may drift from real image edges for large values of o,. We
prefer DoG edges for computational efficiency and because their
thickness scales naturally with o,.

Image-based warping (IBW) To fix small edge drifts linked to
DoG edges and to sharpen the overall appearance of our final result
we optionally perform an image-based warp (Figure 2, top-right).
IBW is a technique first proposed by Arad and Gotsaman [1999]
for image sharpening and edge-preserving expansion, in which they
moved pixels along a warping field towards nearby edges. Lovis-
cach [1999] proposed a simpler IBW implementation, in which the
warping field is the blurred and scaled result of a Sobel filter of
an input image. We use Loviscach’s method with Gaussian blur
o, = 1.5, and a scale factor of ¢,, = 2.7.

3.3 Temporally coherent stylization

To open our framework further for creative use, we perform an op-
tional color quantization step on the abstracted images, which re-
sults in cartoon or paint-like effects (Figures 1 and 4).

A
Q()?, q, (Pq) = Gnearest T 74 tanh(‘l)q : (f()e) - Qnearext)) (6)

In Equation 6, Q(-) is the pseudo-quantized image, Ag is the bin
width, gnearesr 18 the bin boundary closest to f(£), and ¢, is a pa-
rameter controlling the sharpness of the transition from one bin to
another (top inset, Figure 2). Equation 6 is formally a discontinu-
ous function, but for sufficiently large ¢,, these discontinuities are
not noticeable.

For a fixed ¢ the transition sharpness is independent of the un-
derlying image, possibly creating many noticeable transitions in
large smooth-shaded regions. To minimize jarring transitions, we
define the sharpness parameter, ¢, to be a function of the lumi-
nance gradient in the abstracted image. We allow hard bin bound-
aries only where the luminance gradient is high. In low gradient
regions, bin boundaries are spread out over a larger area. We thus
offer the user a trade-off between reduced color variation and in-
creased quantization artifacts by defining a target sharpness range
[Ag, Q] and a gradient range [Ag5,Qs]. We clamp the calculated
gradients to [As,Qs] and then generate a ¢, value by mapping
them linearly to [Ag,Qg]. The effect for typical parameter values
are hard, cartoon-like boundaries in high gradient regions and soft,
painterly-like transitions in low gradient regions (Figure 4). Typi-
cal values for these parameters are g € [8,10] equal-sized bins and
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Figure 5: Sample images from evaluation studies. The top row
shows the original images and the bottom row shows the abstracted
versions. All images use the same o, for edges and the same
number of simplification steps, nj,. Left: Faces similar to those
in Study 1. Right: Sample images from Study 2.

a gradient range of [Ag = 0,Qs = 2], mapped to sharpness values
between [Ap =3,Qp = 14].

Another significant advantage of our pseudo-quantization imple-
mentation is temporal coherence. In standard quantization, an arbi-
trarily small luminance change can push a value to a different bin,
thus causing a large output change for a small input change, which
is particularly troublesome for noisy input. With soft quantization,
such a change is spread over a larger area, making it less notice-
able. Using our gradient-based sharpness control, sudden changes
are further subdued in low-contrast regions, where they would be
most objectionable.

4 Evaluation

To verify that our abstracted images preserve or even distill percep-
tually important information, we performed two task-based studies
to test recognition speed and short term memory retention. Our
studies use small images because we see portable visual communi-
cation and low-bandwidth applications to practically benefit most
from our framework and because small images may be a more
telling test of our framework, as each pixel represents a larger per-
centage of the image.

Participants In each study, 10 (5 male, 5 female) undergradu-
ates, graduate students or research staff acted as volunteers.

Materials Images in Study 1 are scaled to 176 x 220, while those
in Study 2 are scaled to 152 x 170. These resolutions approximate
those of many portable devices. Images are shown on a 30-inch
Apple Cinema Display at a distance of 24 inches. The background
of the monitor is set to white and the displayed images subtend a
visual angle of 6.5 and 6.0 degrees respectively.

In Study 1, 50 images depicting the faces of 25 famous movie
stars are used as visual stimuli. Each face is depicted as a color
photograph and as a color abstracted image created with our frame-
work. Five independent judges rated each pair of photograph and
abstracted image as good likenesses of the face they portrayed. In
Study 2, 32 images depicting arbitrary scenes are used as visual
stimuli. Humans are a component in 16 of these images. Examples
of stimulus images are shown in Figure 5.

Analysis For both studies, p-values are computed using two-way
analysis of variance (ANOVA), with a = 0.05.



4.1 Study 1: Recognition Speed

Study 1 assesses the recognition time of familiar faces presented as
abstract images and photographs. The study uses a protocol [Steve-
nage 1995] demonstrated to be useful in the evaluation of recogni-
tion times for facial images [Gooch et al. 2004].

Procedure Study 1 consists of two phases: (1) reading the list of
25 movie star names out loud, and (2) a reaction time task in which
participants are presented with sequences of the 25 facial images.
All faces take up approximately the same space in the images and
are three quarter views. By pronouncing the names of the people
that are rated, participants tend to reduce the tip-of-the-tongue ef-
fect where a face is recognized without being able to quickly recall
the associated name [Stevenage 1995]. For the same reason, partic-
ipants are told that first, last or both names can be given, whichever
is easiest. Each participant is asked to say the name of the person
pictured as soon as that person’s face is recognized. A study coor-
dinator records reaction times, as well as accuracy of the answers.
Images are shown and reaction times recorded using the Superlab
software product for 5 seconds at 5-second intervals. The order of
image presentation is randomized for each participant.

Results and Discussion In our study, participants are faster
(p < 0.018) at naming abstract images (M = 1.32s) compared to
photographs (M = 1.51s). The accuracy for recognizing abstract
images and photographs are 97% and 99% respectively, indicating
that there is no significant speed for accuracy trade-off. It can fur-
ther be concluded that substituting abstract images for fully detailed
photographs reduces recognition latency by 13%, a significant im-
provement not found by Sevenage [1995] and Gooch et al. [2004].
However, neither author used color images as stimuli.

4.2 Study 2: Memory Game

Study 2 assesses memory retention for abstract images versus pho-
tographs with a memory game, consisting of a grid of 24 randomly
sorted cards placed face-down. The goal is to create a match by
turning over two identical cards. If a match is made, the matched
cards are removed. Otherwise, the cards are placed face down and
another set of cards are turned over. The game ends when all pairs
are matched. We created a Java program of the card game in which
a user turns over a virtual card with a mouse click. The 12 im-
ages used in any given memory game are randomly chosen from
the pool of 32 images without replacement, and randomly arranged.
The program records the time it takes to complete a game and the
number of cards turned over.

Procedure Study 2 consists of three phases: (1) a practice mem-
ory game with alphabet cards, (2) a memory game of photographs,
and (3) a memory game of abstract images. All participants first
play a practice game with alphabet cards to learn the interface and to
develop a game strategy. No data is recorded for the practice phase.
For the remaining two phases, half the participants are presented
with photographs followed by abstracted images, and the other half
is presented with abstracted images followed by photographs.

Results and Discussion In our study, participants are quicker
(Prime < 0.003, pclicks < 0.004) in completing a memory game us-
ing abstract images (Myjme = 59.955s, M_jicks = 49.2) compared to
photographs (M;jye = 76.13s, M jicrs = 62.4). The study demon-
strates that participants play the abstracted image version of the
game faster than the version using photographs. In addition, us-
ing the abstracted images requires fewer cards to be turned over,
possibly indicating that it is easier to remember previously revealed
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Figure 6: Failure case. A case where our contrast-based impor-
tance assumption fails. Left: The subject of this photograph has
very low contrast compared with its background. Right: The cat’s
low contrast fur is abstracted away, while the detail in the structured
carpet is further emphasized. Despite this rare reversal of contrast
assignment, the cat is still well represented.

abstractions. We thus conclude that the automatic image abstraction
of our framework may produce more distinctive imagery.

5 Discussion and Conclusion

Performance We implemented and tested our framework in both
a GPU-based real-time version, using OpenGL and fragment pro-
grams, and a CPU-version using OpenCV. Both versions were
tested on an Athlon 64 3200+ with Windows XP and a GeForce
GT 6800. Performance values depend on graphics drivers, image
size, and framework parameters. Typical values for a 640 x 480
video stream and default parameters are 9 — 15 frames per second
(FPS) for the GPU version and 0.3 — 0.5 FPS for the CPU version.

Limitations Our framework depends on local contrast to estimate
visual salience. Images with very low contrast likely abstract too
much and loose significant detail. Simply increasing contrast of
the original image may reduce this problem, but can also increase
noise. Figure 6 demonstrates an inversion of our general assump-
tion, where important foreground objects have low contrast while
background regions have high contrast. In practice we have ob-
tained good results for many indoor and outdoor scenes.

Human vision operates at various spatial scales simultaneously.
By applying multiple iterations of a non-linear blurring filter we
cover a small range of spatial scales, but the range is not explicitly
parameterized and not as extensive as that of real human vision.

Several high-contrast features that may be emphasized by our
framework are actually deemphasized in human vision, among
these specular highlights and repeated texture. Dealing with
these phenomena using existing techniques requires global image
processing, which is impractical in real-time on today’s GPUs, due
to their limited gather-operation capabilities.

Our fixed equidistant quantization boundaries are arbitrary, mak-
ing it difficult to control results for artistic purposes. Constructing
spatially varying boundaries to better account for underlying dy-
namic range might prove beneficial.

Compression A discussion of theoretical data compression and
codecs exceeds the scope of the paper, but Pham and Vliet [2005]
have shown that video compresses better when bilaterally filtered,
judged by RMS error and MPEG quality score. Collomosse et
al. [2005] list theoretical compression results for vectorized car-
toon images. Possibly most applicable to this paper is work by
Elder [1999], who describes a method to store the color informa-
tion of an image only in high-contrast regions, achieving impressive
compression results.

Indication Indication is the process of representing a repeated
texture with a small number of exemplary patches and relying on
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Figure 7: Automatic indication. The inhomogeneous texture of
the bricks causes spatially varying abstraction. The resulting edges
indicate a brick texture instead of depicting each individual brick.

an observer to interpolate between patches. For structurally sim-
ple, slightly inhomogeneous textures with limited scale variation,
like the brick wall in Figure 7, our framework can perform simple
automatic indication. As noted by DeCarlo and Santella [2002],
such simple indication does not deal well with complex or fore-
shortened textures. Our automatic indication is not as effective as
the user-drawn indications of Winkenbach and Salesin [1994], but
some user guidance can be supplied via Equation 2.

Conclusion We have presented a simple and effective real-time
framework that abstracts images while retaining much of their per-
ceptually important information, as demonstrated in our user study.
Our optional stylization step is temporally highly stable, results in
effective color flattening and is much faster than the mean-shift pro-
cedures used in offline cartoon stylization for video [Collomosse
et al. 2005; Wang et al. 2004]. Interestingly, several authors [Barash
and Comaniciu 2004; Boomgaard and de Weijer 2002] have shown
that anisotropic diffusion filters are closely related to the mean-shift
algorithm. It is thus conceivable that various graphics applications
that today rely on mean-shift could benefit from the much speedier
anisotropic diffusion pre-process used in this paper.
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